# Does Providing the Causes of Chronic Obstructive Pulmonary Disease Influence its Monetary Value Assessed by Contingent Valuation? 

Camille Payre

15. March 2019

## 1 Introduction

Called Pretium Doloris in legal language (Braudo, 2018), disutility in economics (Rozan, 2001) among other terms, the more commonly nammed "pain and suffering" is an effect of health impairment. Whereas other effects of a health impairment, such as the costs of the treatment or the loss of wages can be (quite) easily measured, pain and suffering cannot be directly assessed. Monetary valuation is one way to assess the value to make it possible to compile it with other consequences to help stakeholders decrease these impacts (Hunt and Ferguson, 2010).

Methods have been developed to figure this monetary value out. Among them, in contingent valuation, a stated preference method, affected population is asked their preferences by creating a fictitious market of the studied good, through a questionnaire. This questionnaire aims at capturing the actual preferences of the respondents and at avoiding biasing their answers through the questionnaire. One potential source of bias may be due to the level of information given to the respondents: no information may lead the respondents to imagine everything; too much information may lead to overload and misunderstanding.

The European project HEIMTSA (Maca et al., 2012; Maca et al., 2011) assessed the value of chronic obstructive pulmonary disease (COPD), an illness characterized by the irreversible deterioration of lungs function, mainly caused by active or passive smoking (Andreas et al., 2009) followed by air pollution (indoor, outdoor, occupational exposure). Whereas the results of this survey were used to support decision in air pollution context, and COPD is mainly caused by smoking, it did not precised any causes in the questionnaire.

A question appears: Does the monetary value of pain and suffering depends on the causes of the illness? Should these causes be indicated in the contingent valuation questionnaire?

After a brief review of the theory, this work present the results of a contingent valuation, which empirically trets the influence of providing the cause of the valued illness in the contingent valuation questionnaire.

## 2 Literature

Recommendations are almost consistently made (Ajzen et al., 1996; Boyle, 2003; Mitchell and Carson, 1989) to put for contingent valuations to be put in some context; with little precision other than: i) enough information for the respondents to be familiar with the good to value and consequently eliciting a meaningful value, and increasing the acceptability of the questionnaire; ii) little enough for not overwhelming the respondents, or influencing them. Whereas a no-context approach would tend to make respondents producing values resulting from under-informed decision, the contextualized approach risks facing the embedding effect, influencing respondents' WTP, and cannot avoid the information bias.

When focusing on the causes of an illness, Rozan and Willinger (1999) recall that regarding economic theory the amount stated should not be dependent of the cause. However, Rozan (2000) highlights he different approaches may lead to differences on the object valued: not giving information about the causes of the illness may value the illness itself whereas giving them may lead the value the environmental degradation which causes the illness.

Experimentally, various approaches have been followed. Navrud (2001) and Rozan (2001) have for example provided low information level on cofactors.

In the European survey NEEDS (Desaigues et al., 2011; Desaigues et al., 2006), full information ere provided on the possible co-factors, here about the various impacts on health of air pollution and the elements influencing life expectancy. Ami et al. (2011) and Ami et al. (2013) proposed three ways to decrease the effects of the air pollution (moving, drugs, new regulation). They stated that respondents react differently to the various options, depending on the scenario and their personal characteristics.

Whatever the chosen approach (providing or not information on cofactors), debriefing questions about the causes of the valued health status may be added at the end of the questionnaire to understand which information the respondents took into account in the valuation.

The influence of providing information is not clear: in some cases an increase and in others a decrease of the stated value is observed when information on the context is given. Braathen et al. (2009) observed, in a meta-analysis on surveys valuing mortality, that giving no or low information in the questionnaire leads to lower WTP values than using questionnaire giving more information. Work on choice experiment, while not showing many differences in WTP when providing well-though information, these information increase the reliability of the WTP (decreasing the confidence interval in the valuation).

The present contingent valuation will empirically test the influence of providing different causes of COPD to see the influence on the valuation.

## 3 Method

### 3.1 Design of the questionnaire

After the review of the literature, a case study was conducted to test the influence in a contingent valuation of the context, more specifically the causes of the valued health impacts, on its value. The contingent valuation questionnaire is based on the one used in the project HEIMTSA (Maca et al., 2012; Maca et al., 2011), which provided no information about the causes or context of the illness.

The survey valued pain and suffering due to COPD, for its four stages, described in Figure 1: one day of cough, chronic bronchitis, COPDm, COPDs. The payment vehicle was a magic pill to immediately cure this illness. The payment was a monthly contribution over ten years, and a onetime payment for cough.


Figure 1: description of the illnesses

Four variations of the questionnaire were designed to test the influence of providing information on the two main causes of COPD:
$\checkmark$ "Baseline questionnaire", with no context: the respondent get no information about context and cofactors. It is similar to the one used in the HEIMTSA project.
$\checkmark$ Variant 1, with full context, indicates the illnesses are usually caused by air pollution, but mainly by smoking.
$\checkmark$ Variant 2 provides information that the illnesses are caused by air pollution."
$\checkmark$ Variant 3 provides information on the fact that the illnesses are usually caused by smoking.

It has to be noted that, as smoking is one cause of the studied illness, smoking habits of the respondents are specifically watched out. Figure 2 presents the structure of the questionnaire and highlights their differences.


Figure 2: Design of the questionnaire

### 3.2 Sample

The questionnaire was administrated to a sample of 2000 people representative of the adult French population, part of the panel of IPSOS survey institute. Each respondent get only one variant of the questionnaire. Table 1 presents the distribution of the respondents between the four questionnaires, before and after data treatment, presented in Figure 3.

|  | Before data treatment |  | After data treatment |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Frequency | Proportion | Frequency | Proportion |
| Baseline - no context | 341 | $24.15 \%$ | 229 | $23.3 \%$ |
| V1 - Full context | 291 | $20.61 \%$ | 175 | $17.8 \%$ |
| V2 - Air pollution | 351 | $24.86 \%$ | 247 | $25.1 \%$ |
| V3 - smoking | 429 | $30.38 \%$ | 333 | $33.8 \%$ |
| Total | 1412 | $100 \%$ | 984 | $100.0 \%$ |

Table 1: Repartition of the respondents according to the questionnaires


Figure 3: Data treatment

### 3.3 Analyses of the results

The software used for the analysis IBM SPSS Advanced Statistics 25.0, with the SPSS plug-in STATS HECKMAN REGR; version 1.1.6 by Jon Peck (JKP. IBM SPSS; 2015).

First, unconditional statistics were conducted to assess the reactions of the respondents to the questionnaire, depending on the variants they got (meaning which context was given to explain the illnesses), and their smoking status (non-smoker, former smoker, smoker). Then, the interactions were considered with an econometric approach: probit for the probability of buying the treatment, lognormal for the value of the WTP and Heckman to combine both.

First, the respondents who chose not to pay to buy a treatment to avoid each illness will be analyzed, with focus on the reasons for not wanting to pay, the influence of the context given and the respondents' smoking status. Then, the WTP will be determined for each illness and the influence of the context and the respondents' characteristics will be determined.

## 4 Results and discussion

The influence of providing the causes of the illness may appear in various ways:
$\checkmark$ Difference in the acceptability of the scenario: the part of protest answers may vary with the causes given. If less protest answers are observed when full context is provided, it may mean a realistic scenario increases the acceptability of the contingent valuation, and consequently increase the reliability of the willingness to pay (WTP).
$\checkmark$ Differences in the WTP depending on the different information provided: respondents may change their valuation depending on the given information.
$\checkmark$ Difference in the precision of the WTP: usually confidence intervals are quite wide. If giving contextualization induces smaller confidence interval, contextualization may lead to more accurate WTP.

### 4.1 Paying or not?

As the respondents were first asked if they agree to pay or not the treatment, and the reason why: respondents who really do not want to pay, called legit 0 ; or respondents who actually would pay for the treatment but do not because of other reasons, called protest answers. Two approaches were followed: unconditional statistics and modelling analysis (probit model, results presented in A1, Table 2 to Table 5). Both approaches lead to consistent results.

The main reason for agreeing to pay the treatment is the illness itself: respondents are more ready to pay for the more serious one. All the same, slightly less respondents willing to pay to avoid COPDs than for COPDm. It may be because COPDs is really life-impairing, letting suppose very high treatment costs, so more respondents think they cannot afford it, and would like to rely on the National Health Service, (a protest answer), or just sate that they do not have enough income. On the bright side, it highlights that respondents truly thought about their resources when choosing to buy the treatment or not.

Context seems to have some influences: less protest are observed when full context is provided, then more when air pollution only is said to be the cause of COPD, more for smoking only, and even more when no causes at all are described.

Smoking status of the respondents lead to different behaviors: Smokers and nonsmokers accept more the questionnaire than former smokers. Smokers refuse to pay more for legitimate reasons such as "I cannot afford the treatment" and "My health expenses are too high", whereas former smokers are protesting more against the fat of paying. Non-Smokers show an intermediate response, close to the former smokers' one. One reason may be that smokers accept their responsibility in their (possible) illness, whereas former smokers (and to some extent non-smokers) think they are not responsible and thus rely on the (quite efficient) French national health system. This analysis is supported by the result of the variant of the questionnaire providing smoking long context, and by the fact that respondents who have a good diet, think they may avoid the illness, have a private health insurance and donate to charitable society ae more bound to pay

Nevertheless, the influence of smoking status is not statistically significant,

### 4.2 If paying, how much?

If respondents agree to buy the treatment, they are asked for how much. As for the previous part, two types of analyses were conducted: unconditional statistics and modelling analysis (lognormal model, results presented in A2, Table 6 to Table 9). Both approaches lead to consistent results.

Respondents are ready to pay more for the more serious illnesses, supporting the idea that they account for the possible cost of treatment and detrimental consequences they would experiment without it.

On the one hand, the different contexts provided do not seem to influence the WTP, and context is not a statistically significant variable.

On the other hand, the smoking status of the respondents affects their reaction to the questionnaire. Smokers are ready to pay less than non-smokers and than former smokers. However, significance varies with the analysis. The differences are statistically significant in the descriptive analysis for all illnesses but COPDs, in the modelling approach, smoking status of the respondents is significant only for COPDs (stepwise model) and COPDm (Full model). This may be explained by the fact respondents declared, for the COPDs, COPDm, and cough, that they thought about smoking as a possible cause of the illnesses and actually considered it when stating their WTP. That may be the reason why the causes given in the questionnaires do not really influence the WTP values. This hypothesis is strengthened by the fact that respondents also took into account, for the most serious illnesses, the fact that someone they care for smoke or smoked, and sate an higher WTP in this case. So respondents probably took smoking into account in all variants of the questionnaire.

Moreover, the modelling approach with the lognormal model highlights that being aware of health risk through diet, air pollution or smoking (precisely quitting smoking, which may occur because of health risk), increases the WTP.

Other findings are consistent with usual observations: available resources are considered as households' income, the knowledge on which budget the payment will be made increases the WTP. Moreover, usual health budget, the perception of illness itself and constraints linked to the illnesses are considered, showing respondents do take into consideration their available budget and thus confirming the amounts they state are realistic.

The Heckman model does not show a large influence of the selection process (respondents willing to pay or not) on the WTP value, but it confirms the results of the previous analyses: importance of the income and knowing how to pay, being aware of health and environmental issues, and the low influence of context.

### 4.3 Discussion

These results propose a way to reconcile the two trends in the literature: providing information on the causes increases the reliably of the valuation, without influencing the value itself.

However, in this case, the causes chosen were quite particular. They are in one way quite different: smoking is (mainly) a choice; breathing is not. However, they are mostly similar: both are linked to respiration, have long-term effect and are nowadays quite known by the population. So stating only one cause may also have increase the wariness of the respondents against the questionnaires. Therefore the low differences observed may be due to
the fact that some respondents considered both causes independently of the causes stated in the questionnaire.

It may also have led them to think at their behavior and life conditions in general, as being "healthy conscious" (having a good diet, exercising, and in some cases the level of pollution of the living area) influence the respondents.

Regarding the statistical aspects, extreme values have a high influence and may decrease the significance of the analysis, while possibly reflecting the major importance given by the respondents to their health. The low significance of the analysis may also come from the (relatively) small size of the sample, when considering specific characteristics of the respondents. Moreover, other parameters may influence the risk perception and respondents' answers and have been disregard here: culture, predisposition or education (Finkel, 2008). Indeed, for example, smokers are more inclined to take risks than non-smokers do (Viscusi and Aldy, 2003): other categories may have similar behavior and not been identified here.

## 5 Concluding remarks

Providing the causes of the valued illness actually matches in the same time theory and previous observations: it does not fundamentally change the value, but it increases the acceptability of the questionnaire. It support current practices of using the same values when assessing morbidity in when (quite) similar causes are considered.

Similar analyses with causes less known, or more different, would be interesting as other aspects of context has been observed leading to different reactions as shown by Ami et al. ( $2011,2013,2018$ ) when studying ways to decrease the effects of air pollution on health. Moreover, cognitive bias may overrides other elements provided in the questionnaire, and consequently introduced uncertainties: respondents are less willing to pay when they think they can control the situation, whether this feeling is rational or not. So personal characteristics as well as elements influencing the perception and the responses to a contingent valuation questionnaire appear quite volatile and difficult to capture, even more when they interact. This make the preferences quite difficult to assess. Other investigations may help to better identified the factors driving the apparent instability of the responses in contingent valuation question, and in general in monetary valuation exercises, especially regarding psychology and behavioral drivers, and consequently improve the use of monetary valuation of non-marketed goods in the decision process.

## 6 Acknowledgment

I would like to thank Jean-Christophe Vergnaud and Olivier Chanel, for their support and invaluable guidance.

All remaining errors are my own.

This work was conducted in the frame of my PhD in Economical Science, at University Paris 1 Pantheon-Sorbonne. This work was financially supported by EIfER (Europäisches Institut für Energieforschung EDF-KIT EWIV). Moreover, the contingent valuation questionnaire used in the case study is based on the one used in the European project HEIMTSA (Health and Environment Integrated Methodology and Toolbox for Scenario Development, Sixth Framework Programme), to which the author contributed.

However, the content of this document is free of any control and reflects the opinions of the author and not those of EIFER, nor its members (EDF, KIT).

## 7 Bibliography

Ajzen, I., Brown, T.C., Rosenthal, L.H., 1996. Information Bias in Contingent Valuation: Effects of Personal Relevance, Quality of Information, and Motivational Orientation Journal of Environmental Economics and Management 30(1), 43-57.

Ami, D., Aprahamian, F., Chanel, O., Luchini, S., 2011. A Test of Cheap Talk in Different Hypothetical Contexts: The Case of Air Pollution. Environmental and Resource Economics 50(1), 111-130.

Ami, D., Aprahamian, F., Chanel, O., Luchini, S., 2013. Comment les individus valorisent-ils les décès associés à la pollution atmosphérique ? Une comparaison de trois scénarios hypothétiques. Économie et Statistiques 460-461, 107-126.

Ami, D., Aprahamian, F., Chanel, O., Luchini, S., 2018. When do social cues and scientific information affect stated preferences? Insights from an experiment on air pollution. Journal of Choice Modelling 29, 33-46.

Andreas, S., Hering, T., Mühling, S., Nowak, D., Raupach, T., Worth, H., 2009. Tabakentwöhnung bei chronisch obstruktiver Lungenerktrankung. Deutsches Ärzteblatt 106(16), 7.

Boyle, K.J., 2003. Contingent Valuation in Practice (Chapter 5 in Champ, P.A., K.J. Boyle and Th.C. Brown, A Primer on Nonmarket Valuation). Dordrecht:, pp. 111-169.

Braathen, N.A., Lindhjem, H., Navrud, S., 2009. Valuing Lives Saved From Environmental, Transport And Health Policies: A Meta-Analysis Of Stated Preference Studies, Valuation of Environment-Related Health Impacts, Charles University Environment Center. Prague, Czech Republic.

Braudo, S., 2018. Définition de Pretium doloris. [https://www.dictionnaire-juridique.com/definition/pretium-doloris.php](https://www.dictionnaire-juridique.com/definition/pretium-doloris.php) (accessed 14 octobre.2018).

Desaigues, B., Ami, D., Bartczak, A., Braun-Kohlová, M., Chilton, S., Czajkowski, M., Farreras, V., Hunt, A., Hutchison, M., Jeanrenaud, C., Kaderjak, P., Máca, V., Markiewicz, O.,

Markowska, A., Metcalf, H., Navrud, S., Nielsen, J.S., Ortiz, R., Pellegrini, S., Rabl, A., Riera, R., Scasny, M., Stoeckel, M.E., Szántó, R., Urban, J., 2011. Economic valuation of air pollution mortality: A 9-country contingent valuation survey of value of a life year (VOLY). Ecological Indicators 11(3), 902-910.

Desaigues, B., Ami, D., Hutchison, M., Rabl, A., Chilton, S., Metcalf, H., Hunt, A., Ortiz, R.A., Navrud, S., Kaderjak, P., Szántó, R., Nielsen, J.S., Jeanrenaud, C., Pellegrini, S., Braun Kohlová, M., Scasny, M., Máca, V., Urban, J., Stoeckel, M.-E., Bartczak, A., Markiewicz, O., Riera, P., Farreras, V., 2006. Final Report on the monetary valuation of mortality and morbidity riks from air pollution. NEEDS, p. 55.

Finkel, A.M., 2008. Perceiving Others' Perceptions of Risk. Annals of the New York Academy of Sciences 1128(Strategies for Risk Communication Evolution, Evidence, Experience), 121137.

Hunt, A., Ferguson, J., 2010. A Review Of Recent Policy-Relevant Findings From The Environmental Health Literature, in: OECD (Ed.). Bath (UK), p. 62.

Maca, V., Payre, C., Scasny, M., 2012. Valuation of chronic respiratory illnesses: 6-country study., European Association of Environmental and Resource Economists. 19th Annual Conference. Prague.

Maca, V., Scasny, M., Hunt, A., Anneboina, L., Navrud, S., 2011. Presentation of the unit values for health endpoints: country specific and pooled. GOCE-CT-2006-036913-2, HEIMTSA (Health and Environment Integrated Methodology and Toolbox for Scenario Development), sixth Framework Programme, Thematic Priority 6.3, p. 87.

Mitchell, R.C., Carson, R.T., 1989. Using Surveys to Value Public Goods: The Contingent Valuation Method, 4eme ed.

Navrud, S., 2001. Valuing Health Impacts from Air Pollution in Europe. Environmental and Resource Economics 20(4), 305-329.

Rozan, A., 2000. Bénéfices de santé liés à la qualité de l'environnement: Peut-on négliger les coûts privés? Revue Economique 51(3), 595-608.

Rozan, A., 2001. How to measure health costs induced by air pollution? Schweiz Zeitschrift für Volkwirtschaft und Statistik I(9), 14.

Rozan, A., Willinger, M., 1999. Does the knowledge of the origin of the health damage matter for WTP estimates? Working Paper BETA Université Louis Pasteur, Strasbourg., 20.

Viscusi, W.K., Aldy, J.E., 2003. The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World. Journal of Risk and Uncertainty 27(1), 5-76.

1. A1: Probit model - Accepting to pay or not

|  |  | Estimation | Std Error | Wald | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Constant | . 228 | . 326 | . 489 | . 484 |
| Parameters | Household Income | 3.151E-5 | $2.342 \mathrm{E}-5$ | 1.810 | . 178 |
|  | Context = no context | -. 088 | . 130 | . 456 | . 500 |
|  | Context = full context | -. 048 | . 137 | . 123 | . 726 |
|  | Context =Air pollution | . 321 | . 133 | 5.835 | . 016 |
|  | Context =smoking | $0^{\text {a }}$ |  |  |  |
|  | Sport = Every day | -. 138 | . 208 | . 438 | . 508 |
|  | Sport = Several times a week | . 119 | . 159 | . 557 | . 455 |
|  | Sport = Several times a month | . 440 | . 171 | 6.666 | . 010 |
|  | Sport = Only rarely | . 120 | . 150 | . 643 | . 423 |
|  | Sport = Never | $0^{\text {a }}$ |  |  | . |
|  | Diet = Better than average | . 496 | . 206 | 5.807 | . 016 |
|  | Diet = About average | . 392 | . 179 | 4.801 | . 028 |
|  | Diet = Below average | $0^{\text {a }}$ | . |  | . |
|  | Smoker | -. 140 | . 144 | . 949 | . 330 |
|  | Non-Smoker | -. 119 | . 121 | . 961 | . 327 |
|  | Former Smoker | $0^{\text {a }}$ | . |  | . |
|  | Think illness avoidable $=$ no answer | 4.681 | . 000 |  | . |
|  | Think illness avoidable $=$ Yes | . 399 | . 103 | 15.070 | . 000 |
|  | Think illness avoidable = No | $0^{\text {a }}$ | . |  | . |
|  | Sex = Male | -. 252 | . 101 | 6.243 | . 012 |
|  | Sex = Female | $0^{\text {a }}$ | . |  | . |
|  | Main occupation = no answer | 5.744 | 7582.739 | . 000 | . 999 |
|  | Main occupation = Liberal | . 291 | . 354 | . 674 | . 412 |
|  | Main occupation = Fulltime employee | . 411 | . 237 | 3.011 | . 083 |
|  | Main occupation = Part-time employee | . 309 | . 273 | 1.277 | . 258 |
|  | Main occupation = Student | . 740 | . 300 | 6.079 | . 014 |
|  | Main occupation = Housewife/husband | . 894 | . 390 | 5.250 | . 022 |
|  | Main occupation = Retired | -. 187 | . 246 | . 577 | . 447 |
|  | Main occupation = None | . 169 | . 268 | . 397 | . 529 |
|  | Main occupation = Medical/disability leave | -. 168 | . 410 | . 167 | . 683 |
|  | Main occupation = Other | $0^{\text {a }}$ | . |  | . |
|  | Occupation related health $=$ Yes | . 312 | . 165 | 3.592 | . 058 |
|  | Occupation related health = No | $0^{\text {a }}$ | . |  | . |

Table 2: COPDs - Pay or not - Probit scarce model
Pseudo $R^{2}($ McFadden $)=0.095, N=984$, In grey: Statistically significant parameters

|  |  | Estimation | Standard <br> error | Wald | Sig. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| Parameters | Constant | .352 | .291 | 1.460 | .227 |
|  | Household Income | $2.724 \mathrm{E}-5$ | $2.302 \mathrm{E}-5$ | 1.401 | .237 |
|  | Context = no context | -.101 | .171 | .344 | .558 |
|  | Context = full context | -.204 | .134 | 2.328 | .127 |
|  | Context =Air pollution | .050 | .168 | .090 | .765 |
|  | Context =smoking | $0^{\mathrm{a}}$ | . | . | . |
|  | Sport = Every day | -.122 | .205 | .352 | .553 |
|  | Sport = Several times a week | .160 | .156 | 1.052 | .305 |
|  | Sport = Several times a month | .362 | .164 | 4.842 | .028 |
|  | Sport = Only rarely | .152 | .147 | 1.063 | .302 |
|  | Sport = Never | $0^{\mathrm{a}}$ | . | . | . |


|  | Smoker | -. 098 | . 140 | . 490 | . 484 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Non -Smoker | -. 097 | . 118 | . 679 | . 410 |
|  | Former Smoker | $0^{\text {a }}$ |  |  |  |
|  | Think illness avoidable $=$ no answer | 5.033 | . 000 |  |  |
|  | Think illness avoidable $=$ Yes | . 486 | . 099 | 23.856 | . 000 |
|  | Think illness avoidable $=$ No | $0^{\text {a }}$ |  |  |  |
|  | Risky leisure $=$ Yes | . 632 | . 339 | 3.480 | . 062 |
|  | Risky leisure = No | $0^{\text {a }}$ |  |  |  |
|  | Sex = Male | -. 203 | . 098 | 4.312 | . 038 |
|  | Sex = Female | $0^{\text {a }}$ |  |  |  |
|  | Main occupation = no answer | 5.755 | 7409.468 | . 000 | . 999 |
|  | Main occupation = Liberal | . 598 | . 359 | 2.783 | . 095 |
|  | Main occupation = Fulltime employee | . 462 | . 228 | 4.099 | . 043 |
|  | Main occupation = Part-time employee | . 387 | . 263 | 2.167 | . 141 |
|  | Main occupation = Student | . 600 | . 275 | 4.762 | . 029 |
|  | Main occupation = Housewife/husband | . 836 | . 362 | 5.324 | . 021 |
|  | Main occupation = Retired | -. 058 | . 240 | . 058 | . 810 |
|  | Main occupation = None | . 407 | . 261 | 2.433 | . 119 |
|  | Main occupation $=$ Medical/disability leave | . 418 | . 426 | . 962 | . 327 |
|  | Main occupation = Other | $0^{\text {a }}$ |  |  |  |
|  | Donation charity last year $=$ Yes | . 269 | . 124 | 4.672 | . 031 |
|  | Donation charity last year = No | $0^{\text {a }}$ |  |  |  |
|  | Health insurance $=$ Yes | . 265 | . 129 | 4.214 | . 040 |
|  | Health insurance $=$ No | $0^{\text {a }}$ |  |  |  |

Table 3: COPDm - Pay or not - Probit scarce model
Pseudo $R^{2}($ McFadden $)=0.084, N=984$, In grey: Statistically significant parameters

|  |  | Estimation | Standard Error | Wald | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Constant | . 653 | . 314 | 4.337 | . 037 |
| Parameters | Household Income | $2.301 \mathrm{E}-5$ | $2.151 \mathrm{E}-5$ | 1.145 | . 285 |
|  | Context = no context | . 082 | . 164 | . 253 | . 615 |
|  | Context = full context | -. 168 | . 128 | 1.724 | . 189 |
|  | Context = Air pollution | . 138 | . 160 | . 741 | . 389 |
|  | Context =smoking | $0^{\text {a }}$ | . | . |  |
|  | Diet = Better than average | . 327 | . 195 | 2.814 | . 093 |
|  | Diet = About average | . 227 | . 172 | 1.739 | . 187 |
|  | Diet = Below average | $0^{\text {a }}$ | . | . |  |
|  | Smoker | -. 045 | . 134 | . 113 | . 736 |
|  | Non -Smoker | -. 134 | . 112 | 1.421 | . 233 |
|  | Former Smoker | $0^{\text {a }}$ | . | . |  |
|  | Think illness avoidable $=$ no answer | 5.299 | . 000 | . |  |
|  | Think illness avoidable $=$ Yes | . 342 | . 096 | 12.763 | . 000 |
|  | Think illness avoidable $=$ No | $0^{\text {a }}$ | . | . |  |
|  | Sex = Male | -. 211 | . 093 | 5.127 | . 024 |
|  | Sex = Female | $0^{\text {a }}$ | . | . | . |
|  | Main occupation = no answer | -. 061 | . 927 | . 004 | . 947 |
|  | Main occupation = Liberal | . 927 | . 351 | 6.984 | . 008 |
|  | Main occupation = Fulltime employee | . 678 | . 219 | 9.589 | . 002 |
|  | Main occupation = Parttime employee | . 502 | . 250 | 4.023 | . 045 |



Table 4: CB - Pay or not - Probit scarce model
Pseudo $R^{2}($ McFadden $)=0.087, N=984$, In grey: Statistically significant parameters

|  |  | Estimation | Standard Error | Wald | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Constant | -24.183 | 9.151 | 6.983 | . 008 |
| Parameters | Birth year | -. 013 | . 005 | 7.369 | . 007 |
|  | Household size | . 096 | . 033 | 8.305 | . 004 |
|  | Household Income | -1.908E-5 | $2.001 \mathrm{E}-5$ | . 909 | . 340 |
|  | Context = no context | . 095 | . 154 | . 379 | . 538 |
|  | Context = full context | -. 016 | . 122 | . 017 | . 897 |
|  | Context = Air pollution | -. 049 | . 148 | . 107 | . 743 |
|  | Context =smoking | $0^{\text {a }}$ | . |  |  |
|  | Health = Well above average | -. 830 | . 363 | 5.241 | . 022 |
|  | Health = Above average | -. 741 | . 341 | 4.735 | . 030 |
|  | Health = Average | -. 644 | . 330 | 3.807 | . 051 |
|  | Health = Below average | -. 736 | . 346 | 4.508 | . 034 |
|  | Health = Well below average | $0^{\text {a }}$ |  |  |  |
|  | Diet = Better than average | . 384 | . 198 | 3.761 | . 052 |
|  | Diet = About average | . 323 | . 179 | 3.270 | . 071 |
|  | Diet = Below average | $0^{\text {a }}$ |  |  |  |
|  | Smoker | . 107 | . 126 | . 724 | . 395 |
|  | Non -Smoker | . 035 | . 106 | . 110 | . 740 |
|  | Former Smoker | $0^{\text {a }}$ | . | . |  |
|  | Think illness avoidable $=$ no answer | 6.030 | . 000 | . |  |
|  | Think illness avoidable $=$ Yes | . 163 | . 094 | 3.012 | . 083 |
|  | Think illness avoidable = No | $0^{\text {a }}$ | . | . |  |
|  | Risky leisure $=$ Yes | . 409 | . 250 | 2.690 | . 101 |
|  | Risky leisure = No | $0^{\text {a }}$ | . |  |  |
|  | Main occupation = no answer | -6.226 | . 000 | . | . |
|  | Main occupation = Liberal | . 250 | . 322 | . 600 | . 438 |
|  | Main occupation = Fulltime employee | . 382 | . 223 | 2.940 | . 086 |
|  | Main occupation = Parttime employee | . 246 | . 249 | . 976 | . 323 |
|  | Main occupation = Student | . 199 | . 277 | . 514 | . 473 |
|  | Main occupation = Housewife/husband | . 600 | . 311 | 3.732 | . 053 |
|  | Main occupation = Retired | . 166 | . 247 | . 449 | . 503 |
|  | Main occupation = None | . 189 | . 254 | . 555 | . 456 |
|  | Main occupation = Medical/disability leave | . 075 | . 402 | . 035 | . 851 |
|  | Main occupation = Other | $0^{\text {a }}$ | . | . |  |
|  | Donation charity last year $=$ Yes | . 193 | . 110 | 3.073 | . 080 |
|  | Donation charity last year = No | $0^{\text {a }}$ | . | . |  |


|  | Health insurance $=$ Yes | .269 | .117 | 5.318 | .021 |
| :--- | :--- | :---: | :---: | :---: | :---: |
|  | Health insurance $=$ No | $0^{\mathrm{a}}$ | . | . | . |

Table 5: Cough - Pay or not - Probit scarce model
Pseudo $R^{2}($ McFadden $)=0.047, N=984$, In grey: Statistically significant parameters

## 2. A2: WTP - Lognormal model

Table 6: COPDs WTP - Lognormal model
$R^{2}$ adjusted $=0.443$, sample size 674, In grey: sigma $<0.1$

| COPDs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coefficients non standard |  | $\begin{array}{\|c\|} \hline \text { Coefficients } \\ \text { standard } \end{array}$ | t | Sig. |
|  | B | Standard error | Bêta |  |  |
| (Constant) | -3.454 | 3.393 |  | -1.018 | . 309 |
| Context = full context | -. 074 | . 071 | -. 049 | -1.038 | . 300 |
| Context = Air pollution | -. 061 | . 053 | -. 048 | -1.161 | . 246 |
| Context =smoking | -. 085 | . 065 | -. 072 | -1.312 | . 190 |
| Health = Well above average | . 020 | . 070 | . 009 | . 293 | . 770 |
| Health = Above average | -. 011 | . 046 | -. 008 | -. 237 | . 813 |
| Health = Below average | . 069 | . 058 | . 038 | 1.180 | . 239 |
| Health = Well below average | . 241 | . 140 | . 056 | 1.723 | . 085 |
| Preexisting condition: Chronic bronchitis | -. 024 | . 123 | -. 006 | -. 198 | 843 |
| Hospital last year | -. 011 | . 137 | -. 002 | -. 079 | . 937 |
| WTP: $1^{\text {st }}$ proposed amount CODPs | $2.109 \mathrm{E}-5$ | . 000 | . 051 | 1.659 | . 098 |
| WTP: lowest proposed amount CODPs | . 001 | . 000 | . 537 | 15.755 | . 000 |
| WTP: highest proposed amount CODPs | -6.696E-6 | . 000 | -. 014 | -. 420 | 675 |
| WTP criteria: illness duration | -. 005 | . 035 | -. 004 | -. 142 | 887 |
| WTP criteria: other | -. 005 | . 020 | -. 008 | -. 271 | 786 |
| WTP criteria: comparison with usual health expenses | . 083 | . 026 | . 108 | 3.238 | . 001 |
| WTP criteria: pain | -. 063 | . 039 | -. 051 | -1.590 | . 112 |
| WTP criteria: living standard | . 040 | . 030 | . 043 | 1.314 | . 189 |
| WTP criteria: long term effects of the illness | -. 094 | . 038 | -. 081 | -2.494 | . 013 |
| Planning to pay - personal income | . 050 | . 041 | . 044 | 1.227 | . 220 |
| Planning to pay - savings | -. 011 | . 060 | -. 006 | -. 183 | 855 |
| Planning to pay - other | -. 283 | . 075 | -. 125 | -3.759 | . 000 |
| Sport = Every day | . 092 | . 089 | . 040 | 1.030 | . 303 |
| Sport = Several times a week | . 022 | . 065 | . 017 | . 338 | 736 |
| Sport = Several times a month | . 067 | . 065 | . 051 | 1.038 | . 300 |
| Sport = Only rarely | -. 014 | . 062 | -. 012 | -. 231 | 818 |
| Dwelling = Heavily air polluted | -. 038 | . 080 | -. 017 | -. 473 | 636 |
| Dwelling = Somewhat air polluted | -. 037 | . 056 | -. 027 | -. 661 | . 509 |
| Dwelling = Slightly air polluted | -. 007 | . 048 | -. 006 | -. 145 | 885 |
| Diet = better than average | . 013 | . 043 | . 009 | . 294 | . 769 |
| Diet = below than average | . 022 | . 079 | . 009 | . 278 | . 781 |
| Smoker | -. 049 | . 054 | -. 035 | -. 907 | . 365 |
| Non-Smoker | -. 071 | . 045 | -. 063 | -1.596 | . 111 |
| Difficulties to assess WTP - I do not know my usual health expenses | -. 083 | . 047 | -. 057 | -1.765 | . 078 |
| Difficulties to assess WTP - I do not know how much costs medicaments | . 017 | . 037 | . 015 | . 461 | . 645 |
| Difficulties to assess WTP - I have difficulties to imagine constraints due to these illnesses | . 061 | . 034 | . 057 | 1.823 | . 069 |
| Difficulties to assess WTP - I have difficulties to imagine what proposed amounts represent | . 056 | . 038 | . 046 | 1.465 | . 143 |


| Difficulties to assess WTP - illnesses are similar | -. 097 | . 064 | -. 049 | -1.506 | . 132 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Difficulties to assess WTP - proposed amounts do not fit | -. 008 | . 047 | -. 006 | -. 178 | . 859 |
| Think you can avoid these illnesses | -. 053 | . 043 | -. 040 | -1.230 | . 219 |
| You think illnesses caused by air pollution and smoking | . 031 | . 059 | . 017 | . 536 | . 592 |
| You think illnesses caused by smoking | . 094 | . 043 | . 073 | 2.186 | . 029 |
| You think illnesses caused by air pollution | . 007 | . 056 | . 004 | . 126 | . 899 |
| WTP - Thought about smoking but no influence | -. 077 | . 044 | -. 067 | -1.753 | . 080 |
| WTP - Thought about smoking and influence | -. 023 | . 059 | -. 016 | -. 396 | . 692 |
| WTP - Thought about air pollution but no influence | . 070 | . 043 | . 059 | 1.613 | . 107 |
| WTP - Thought about air pollution and influence | . 029 | . 063 | . 017 | . 458 | . 647 |
| WTP - Thought about prevention program | . 076 | . 044 | . 060 | 1.740 | . 082 |
| WTP - Thought about the costs of theses illnesses for society | -. 006 | . 044 | -. 005 | -. 135 | . 893 |
| Knowing that this kind of respiratory problems could become so serious | . 037 | . 035 | . 032 | 1.046 | . 296 |
| 1 Relative smoker | -. 043 | . 038 | -. 037 | -1.138 | . 256 |
| Risky occupation | . 001 | . 044 | . 001 | . 018 | . 986 |
| Risky leisure | . 143 | . 099 | . 044 | 1.446 | . 149 |
| Sex | -. 064 | . 037 | -. 056 | -1.747 | . 081 |
| Birth year | . 002 | . 002 | . 057 | 1.399 | . 162 |
| Household size < 15 years old | . 010 | . 022 | . 015 | . 441 | . 659 |
| Marital status = Married | . 072 | . 050 | . 061 | 1.436 | . 152 |
| Marital status = Divorced | -. 021 | . 073 | -. 011 | -. 291 | . 772 |
| Marital status = Widower | -. 003 | . 135 | -. 001 | -. 020 | . 984 |
| Education = A-level | . 135 | . 048 | . 102 | 2.800 | . 005 |
| Education = A-level+2 | . 139 | . 054 | . 097 | 2.599 | . 010 |
| Education = Bachelor | . 146 | . 070 | . 073 | 2.094 | . 037 |
| Education $=$ Master + | . 153 | . 066 | . 086 | 2.329 | . 020 |
| Occupation related to health | -. 019 | . 052 | -. 011 | -. 366 | . 715 |
| Donation charity last year | . 039 | . 046 | . 033 | . 851 | . 395 |
| Health insurance | -. 043 | . 049 | -. 036 | -. 872 | . 383 |
| Log Household Income | . 105 | . 076 | . 052 | 1.387 | . 166 |

Table 7: COPDm WTP - Lognormal model
$R^{2}$ adjusted $=0.214$, sample size 657, In grey: sigma $<0.1$

| CODPm |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Coefficients non <br> standard | Coefficients <br> standard | $\mathbf{t}$ | Sig. |  |
|  | B | Standard <br> error |  |  |  |
| Constant) | -1.893 | 3.506 |  | -.540 | .589 |
| Context $=$ full context | .004 | .075 | .003 | .049 | .961 |
| Context =Air pollution | .037 | .055 | .034 | .681 | .496 |
| Context =smoking | .053 | .067 | .052 | .789 | .430 |
| Health $=$ Well above average | -.012 | .075 | -.006 | -.159 | .874 |
| Health = Above average | .002 | .047 | .002 | .049 | .961 |


| Health = Below average | . 068 | . 062 | . 042 | 1.099 | . 272 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Health = Well below average | . 147 | . 138 | . 042 | 1.061 | . 289 |
| Preexisting condition: Chronic bronchitis | -. 062 | . 125 | -. 019 | -. 499 | . 618 |
| Hospital last year | -. 139 | . 142 | -. 037 | -. 977 | . 329 |
| WTP: $1^{\text {st }}$ proposed amount CODPm | $2.104 \mathrm{E}-5$ | . 000 | . 057 | 1.553 | . 121 |
| WTP: lowest proposed amount CODPm | . 001 | . 000 | . 346 | 8.826 | . 000 |
| WTP: highest proposed amount CODPm | -4.422E-6 | . 000 | -. 011 | -. 280 | . 780 |
| WTP criteria: illness duration | . 014 | . 037 | . 014 | . 377 | . 707 |
| WTP criteria: other | . 023 | . 022 | . 037 | 1.023 | . 307 |
| WTP criteria: comparison with usual health expenses | . 038 | . 026 | . 057 | 1.429 | . 154 |
| WTP criteria: pain | . 005 | . 039 | . 005 | 120 | . 905 |
| WTP criteria: living standard | . 036 | . 031 | . 045 | 1.154 | . 249 |
| WTP criteria: long term effects of the illness | -. 034 | . 038 | -. 034 | -. 893 | . 372 |
| Planning to pay - personal income | . 010 | . 043 | . 010 | . 222 | . 825 |
| Planning to pay - savings | . 090 | . 060 | . 061 | 1.483 | . 138 |
| Planning to pay - other | -. 214 | . 086 | -. 096 | -2.486 | . 013 |
| Sport = Every day | . 137 | . 092 | . 069 | 1.492 | . 136 |
| Sport = Several times a week | . 039 | . 067 | . 037 | . 589 | . 556 |
| Sport = Several times a month | . 053 | . 067 | . 046 | . 782 | . 435 |
| Sport = Only rarely | . 026 | . 065 | . 025 | . 401 | . 688 |
| Dwelling = Heavily air polluted | . 133 | . 082 | . 072 | 1.627 | . 104 |
| Dwelling = Somewhat air polluted | . 097 | . 058 | . 084 | 1.670 | . 096 |
| Dwelling = Slightly air polluted | . 047 | . 050 | . 049 | . 941 | . 347 |
| Diet = better than average | . 011 | . 046 | . 009 | . 243 | . 808 |
| Diet = below than average | -. 024 | . 079 | -. 012 | -. 306 | 760 |
| Smoker | -. 096 | . 056 | -. 081 | -1.721 | . 086 |
| Non-Smoker | -. 044 | . 047 | -. 044 | -. 930 | . 353 |
| Difficulties to assess WTP - I do not know my usual health expenses | -. 031 | . 049 | -. 024 | -. 634 | . 527 |
| Difficulties to assess WTP - I do not know how much costs medicaments | -. 046 | . 038 | -. 046 | -1.202 | . 230 |
| Difficulties to assess WTP - I have difficulties to imagine constraints due to these illnesses | . 063 | . 035 | . 069 | 1.826 | . 068 |
| Difficulties to assess WTP - I have difficulties to imagine what proposed amounts represent | . 030 | . 040 | . 029 | . 765 | . 445 |
| Difficulties to assess WTP - illnesses are similar | . 038 | . 070 | . 022 | . 552 | . 581 |
| Difficulties to assess WTP - proposed amounts do not fit | -. 026 | . 050 | -. 020 | -. 527 | . 598 |
| Think you can avoid these illnesses | -. 049 | . 043 | -. 044 | -1.139 | . 255 |
| You think illnesses caused by air pollution and smoking | . 043 | . 062 | . 027 | . 686 | . 493 |
| You think illnesses caused by smoking | -. 005 | . 044 | -. 005 | -. 117 | 907 |
| You think illnesses caused by air pollution | -. 004 | . 057 | -. 003 | -. 077 | 938 |
| WTP - Thought about smoking but no influence | -. 017 | . 047 | -. 018 | -. 374 | 709 |
| WTP - Thought about smoking and influence | . 083 | . 061 | . 066 | 1.371 | . 171 |
| WTP - Thought about air pollution but no influence | . 042 | . 045 | . 041 | . 938 | . 349 |
| WTP - Thought about air pollution and influence | -. 016 | . 067 | -. 011 | -. 235 | . 814 |
| WTP - Thought about prevention program | . 041 | . 046 | . 037 | . 896 | . 371 |
| WTP - Thought about the costs of theses illnesses for society | . 020 | . 045 | . 018 | . 444 | . 657 |


| Knowing that this kind of respiratory problems <br> could become so serious | .008 | .037 | .008 | .225 | .822 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ Relative smoker | -.075 | .039 | -.075 | -1.930 | .054 |
| Risky occupation | -.011 | .046 | -.009 | -.226 | .821 |
| Risky leisure | .190 | .102 | .069 | 1.868 | .062 |
| Sex | -.056 | .039 | -.057 | -1.462 | .144 |
| Birth year | .001 | .002 | .036 | .735 | .462 |
| Household size < 15 years old | -.005 | .022 | -.008 | -.208 | .836 |
| Marital status = Married | -.025 | .052 | -.024 | -.482 | .630 |
| Marital status = Divorced | -.103 | .075 | -.061 | -1.369 | .172 |
| Marital status = Widower | .098 | .137 | .027 | .719 | .472 |
| Education = A-level | .097 | .051 | .085 | 1.910 | .057 |
| Education = A-level+2 | .066 | .055 | .055 | 1.212 | .226 |
| Education = Bachelor | .078 | .074 | .045 | 1.059 | .290 |
| Education = Master + | .119 | .068 | .078 | 1.752 | .080 |
| Occupation related to health | .032 | .054 | .022 | .580 | .562 |
| Donation charity last year | .036 | .048 | .035 | .758 | .449 |
| Health insurance | -.004 | .051 | -.004 | -.085 | .932 |
| Log Household Income | .254 | .079 | .142 | 3.216 | .001 |

Table 8 CB WTP - Lognormal model
$R^{2}$ adjusted $=0.201$, sample size 623, In grey: sigma $<0.1$

| CB |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coefficients non standard |  | $\begin{array}{\|c\|} \hline \text { Coefficients } \\ \text { standard } \end{array}$ | t | Sig. |
|  | B | $\begin{gathered} \text { Standard } \\ \text { error } \end{gathered}$ | Bêta |  |  |
| (Constant) | . 779 | 3.822 |  | . 204 | . 839 |
| Context = full context | -. 071 | . 082 | -. 050 | -. 862 | . 389 |
| Context = Air pollution | -. 008 | . 059 | -. 007 | -. 134 | . 894 |
| Context =smoking | -. 101 | . 073 | -. 095 | -1.390 | 165 |
| Health = Well above average | -. 005 | . 079 | -. 003 | -. 067 | . 947 |
| Health = Above average | -. 062 | . 052 | -. 049 | -1.204 | . 229 |
| Health = Below average | . 049 | . 068 | . 028 | . 720 | . 472 |
| Health = Well below average | . 115 | . 152 | . 031 | . 755 | . 450 |
| Preexisting condition: Chronic bronchitis | -. 107 | . 124 | -. 034 | -. 864 | . 388 |
| Hospital last year | -. 041 | . 150 | -. 011 | -. 274 | 784 |
| WTP: $1^{\text {st }}$ proposed amount CB | $\begin{gathered} 4.856 \mathrm{E}- \\ 5 \\ \hline \end{gathered}$ | . 000 | . 120 | 3.152 | . 002 |
| WTP: lowest proposed amount CB | . 001 | . 000 | . 326 | 8.352 | . 000 |
| WTP: highest proposed amount CB | $\begin{array}{\|c} \hline 5.705 \mathrm{E}- \\ 5 \\ \hline \end{array}$ | . 000 | . 110 | 2.852 | . 005 |
| WTP criteria: illness duration | . 019 | . 039 | . 019 | . 475 | 635 |
| WTP criteria: other | . 023 | . 025 | . 036 | . 932 | . 352 |
| WTP criteria: comparison with usual health expenses | . 021 | . 029 | . 030 | . 721 | 471 |
| WTP criteria: pain | -. 016 | . 043 | -. 014 | -. 361 | . 719 |
| WTP criteria: living standard | . 015 | . 034 | . 018 | . 447 | . 655 |
| WTP criteria: long term effects of the illness | -. 065 | . 042 | -. 062 | -1.545 | . 123 |
| Planning to pay - personal income | . 052 | . 046 | . 051 | 1.124 | . 261 |
| Planning to pay - savings | . 061 | . 066 | . 039 | . 1.85 | . 355 |
| Planning to pay - other | -. 166 | . 088 | -. 076 | -1.886 | . 060 |
| Sport = Every day | . 132 | . 097 | . 065 | 1.356 | 176 |


| Sport = Several times a week | . 017 | . 072 | . 015 | . 236 | . 813 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sport = Several times a month | . 096 | . 072 | . 078 | 1.336 | . 182 |
| Sport = Only rarely | . 055 | . 069 | . 050 | . 802 | . 423 |
| Dwelling = Heavily air polluted | . 026 | . 091 | . 013 | . 283 | . 777 |
| Dwelling = Somewhat air polluted | . 014 | . 062 | . 012 | . 224 | . 823 |
| Dwelling = Slightly air polluted | . 005 | . 054 | . 005 | . 090 | . 928 |
| Diet = better than average | . 028 | . 048 | . 023 | . 583 | . 560 |
| Diet = below than average | -. 052 | . 086 | -. 024 | -. 600 | . 548 |
| Smoker | -. 080 | . 060 | -. 065 | -1.335 | . 182 |
| Non-Smoker | -. 055 | . 050 | -. 054 | -1.097 | . 273 |
| Difficulties to assess WTP - I do not know my usual health expenses | -. 058 | . 052 | -. 045 | -1.124 | . 261 |
| Difficulties to assess WTP - I do not know how much costs medicaments | -. 047 | . 043 | -. 044 | -1.096 | . 274 |
| Difficulties to assess WTP - I have difficulties to imagine constraints due to these illnesses | . 030 | . 038 | . 031 | . 799 | . 425 |
| Difficulties to assess WTP - I have difficulties to imagine what proposed amounts represent | -. 008 | . 044 | -. 007 | -. 186 | . 852 |
| Difficulties to assess WTP - illnesses are similar | -. 004 | . 072 | -. 002 | -. 054 | . 957 |
| Difficulties to assess WTP - proposed amounts do not fit | . 029 | . 052 | . 022 | . 562 | . 574 |
| Think you can avoid these illnesses | -. 090 | . 046 | -. 077 | -1.933 | . 054 |
| You think illnesses caused by air pollution and smoking | -. 037 | . 066 | -. 023 | -. 562 | . 575 |
| You think illnesses caused by smoking | . 066 | . 048 | . 057 | 1.370 | . 171 |
| You think illnesses caused by air pollution | . 011 | . 063 | . 007 | . 168 | . 866 |
| WTP - Thought about smoking but no influence | . 008 | . 051 | . 008 | . 162 | . 871 |
| WTP - Thought about smoking and influence | . 100 | . 065 | . 076 | 1.533 | . 126 |
| WTP - Thought about air pollution but no influence | . 007 | . 049 | . 007 | . 144 | . 885 |
| WTP - Thought about air pollution and influence | -. 009 | . 072 | -. 006 | -. 126 | . 900 |
| WTP - Thought about prevention program | -. 012 | . 051 | -. 010 | -. 228 | . 820 |
| WTP - Thought about the costs of theses illnesses for society | . 061 | . 049 | . 053 | 1.235 | . 217 |
| Knowing that this kind of respiratory problems could become so serious | -. 012 | . 040 | -. 012 | -. 296 | . 767 |
| 1 Relative smoker | -. 025 | . 043 | -. 024 | -. 584 | . 559 |
| Risky occupation | -. 021 | . 051 | -. 016 | -. 404 | . 687 |
| Risky leisure | . 249 | . 111 | . 086 | 2.239 | . 026 |
| Sex | -. 072 | . 042 | -. 070 | -1.723 | . 085 |
| Birth year | . 000 | . 002 | -. 003 | -. 057 | . 954 |
| Household size < 15 years old | . 002 | . 024 | . 004 | . 097 | . 923 |
| Marital status = Married | -. 035 | . 056 | -. 033 | -. 622 | . 534 |
| Marital status = Divorced | -. 177 | . 081 | -. 100 | -2.168 | . 031 |
| Marital status = Widower | -. 020 | . 140 | -. 006 | -. 141 | . 888 |
| Education = A-level | . 109 | . 055 | . 091 | 1.990 | . 047 |
| Education = A-level +2 | . 087 | . 060 | . 067 | 1.442 | . 150 |
| Education = Bachelor | . 161 | . 078 | . 091 | 2.056 | . 040 |
| Education = Master + | . 186 | . 077 | . 113 | 2.426 | . 016 |
| Occupation related to health | . 090 | . 060 | . 059 | 1.507 | . 132 |
| Donation charity last year | . 093 | . 053 | . 086 | 1.766 | . 078 |
| Health insurance | -. 069 | . 056 | -. 064 | -1.236 | . 217 |
| Log Household Income | . 167 | . 087 | . 089 | 1.922 | . 055 |

Table 9: Cough WTP - Lognormal model $R^{2}$ adjusted $=0.393$, sample size 401, In grey: sigma $<0.1$

| Cough |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coefficients non standard |  | Coefficients standard | Sig. |  |
|  | B | Standard error | Bêta |  |  |
| (Constant) | 3.888 | 3.465 |  | 1.122 | . 263 |
| Context = full context | . 121 | . 072 | . 108 | 1.677 | . 094 |
| Context = Air pollution | . 022 | . 056 | . 022 | 396 | . 692 |
| Context =smoking | . 041 | . 066 | . 046 | . 613 | . 541 |
| Health = Well above average | . 043 | . 076 | . 024 | . 561 | . 575 |
| Health = Above average | . 009 | . 046 | . 008 | 189 | . 850 |
| Health = Below average | . 046 | . 060 | . 032 | 764 | . 445 |
| Health = Well below average | -. 062 | . 116 | -. 024 | -. 539 | . 590 |
| Preexisting condition: Chronic bronchitis | -. 019 | . 101 | -. 008 | -. 191 | . 849 |
| Hospital last year | . 024 | . 115 | . 009 | . 208 | . 836 |
| WTP: $1^{\text {st }}$ proposed amount Cough | $3.177 \mathrm{E}-5$ | . 000 | . 005 | 118 | . 906 |
| WTP: lowest proposed amount Cough | . 007 | . 000 | . 621 | 13.240 | . 000 |
| WTP: highest proposed amount Cough | $1.946 \mathrm{E}-5$ | . 000 | . 057 | 1.201 | . 230 |
| WTP criteria: illness duration | . 008 | . 036 | . 010 | . 233 | . 816 |
| WTP criteria: other | . 017 | . 020 | . 036 | . 846 | . 398 |
| WTP criteria: comparison with usual health expenses | -. 029 | . 027 | -. 048 | -1.076 | . 283 |
| WTP criteria: pain | -. 052 | . 038 | -. 059 | -1.357 | 176 |
| WTP criteria: living standard | . 039 | . 031 | . 055 | 1.253 | . 211 |
| WTP criteria: long term effects of the illness | . 012 | . 038 | . 014 | . 323 | . 747 |
| Planning to pay - personal income | . 081 | . 041 | . 095 | 1.966 | . 050 |
| Planning to pay - savings | . 058 | . 058 | . 045 | . 987 | . 324 |
| Planning to pay - other | -. 123 | . 073 | -. 075 | -1.698 | . 090 |
| 1 Sport = Every day | . 025 | . 086 | . 015 | . 296 | . 768 |
| Sport = Several times a week | . 036 | . 064 | . 039 | . 563 | . 574 |
| Sport = Several times a month | . 107 | . 065 | . 102 | 1.639 | . 102 |
| Sport = Only rarely | . 039 | . 062 | . 041 | . 619 | . 536 |
| Dwelling = Heavily air polluted | . 026 | . 081 | . 016 | . 320 | . 749 |
| Dwelling = Somewhat air polluted | -. 090 | . 055 | -. 088 | -1.621 | . 106 |
| Dwelling = Slightly air polluted | -. 068 | . 048 | -. 080 | -1.424 | 155 |
| Diet = better than average | . 046 | . 043 | . 046 | 1.069 | . 286 |
| Diet = below than average | -. 122 | . 087 | -. 059 | -1.402 | . 162 |
| Smoker | . 006 | . 054 | . 006 | . 115 | . 909 |
| Non-Smoker | -. 001 | . 045 | -. 001 | -. 019 | . 985 |
| Difficulties to assess WTP - I do not know my usual health expenses | . 003 | . 045 | . 002 | . 058 | . 954 |
| Difficulties to assess WTP - I do not know how much costs medicaments | -. 008 | . 037 | -. 009 | -. 228 | . 820 |
| Difficulties to assess WTP - I have difficulties to imagine constraints due to these illnesses | -. 010 | . 033 | -. 012 | -. 300 | . 764 |
| Difficulties to assess WTP - I have difficulties to imagine what proposed amounts represent | -. 001 | . 038 | -. 001 | -. 029 | . 977 |
| Difficulties to assess WTP - illnesses are similar | -. 026 | . 064 | -. 018 | -. 410 | . 682 |
| Difficulties to assess WTP - proposed amounts do not fit | -. 013 | . 048 | -. 011 | -. 263 | . 793 |


| Think you can avoid these illnesses | -.041 | .041 | -.044 | -1.013 | .312 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| You think illnesses caused by air pollution <br> and smoking | -.023 | .061 | -.017 | -.371 | .711 |
| You think illnesses caused by smoking | .038 | .044 | .040 | .873 | .383 |
| You think illnesses caused by air pollution | -.046 | .057 | -.036 | -.797 | .426 |
| WTP - Thought about smoking but no <br> influence | -.034 | .045 | -.039 | -.762 | .447 |
| WTP - Thought about smoking and <br> influence | .013 | .058 | .012 | .220 | .826 |
| WTP - Thought about air pollution but no <br> influence | .019 | .045 | .022 | .438 | .662 |
| WTP - Thought about air pollution and <br> influence | .048 | .063 | .041 | .774 | .439 |
| WTP - Thought about prevention program | .028 | .044 | .030 | .642 | .521 |
| WTP - Thought about the costs of theses <br> illnesses for society | -.031 | .043 | -.033 | -.720 | .472 |
| Knowing that this kind of respiratory <br> problems could become so serious | .011 | .036 | .013 | .307 | .759 |
| R Relative smoker | -.016 | .038 | -.019 | -.426 | .671 |
| Risky occupation | .025 | .047 | .023 | .525 | .600 |
| Risky leisure | -.058 | .098 | -.024 | -.587 | .558 |
| Sex | -.013 | .037 | -.016 | -.364 | .716 |
| Birth year | -.001 | .002 | -.042 | -.795 | .427 |
| Household size < 15 years old | .004 | .020 | .009 | .198 | .843 |
| Marital status = Married | -.062 | .052 | -.068 | -1.189 | .235 |
| Marital status = Divorced | -.056 | .073 | -.038 | -.761 | .447 |
| Marital status = Widower | -.161 | .119 | -.059 | -1.351 | .178 |
| Education = A-level | .053 | .050 | .052 | 1.056 | .292 |
| Education = A-level+2 | -.025 | .052 | -.023 | -.479 | .632 |
| Education = Bachelor | .008 | .068 | -.005 | -.114 | .909 |
| Education = Master + | .069 | .015 | .306 | .760 |  |
| Occupation related to health | .021 | .055 | .080 | 1.955 | .051 |
| Donation charity last year | .053 | -.023 | -.404 | .687 |  |
| Health insurance | .087 | -.039 | -.739 | .460 |  |
| Log Household Income |  |  |  |  |  |

